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"Symmetry as wide or as narrow as you may define it, is one idea by which man

through the ages has tried to comprehend, and create order, beauty and perfection."

- Hermann Weyl

INTRODUCTION

Duality is a special kind of symmetry. In everyday language, a common duality exists between

antonyms such as hot and cold, tall and short, love and hatred, male and female, etc. Basically,

the one concept is defined by and understood in terms of the other, and together they form a

whole which complement and enrich each other.

In mathematics there are often important dualities between certain concepts and operators. For

example, in projective geometry we find an interesting duality between the following concepts:

vertices (points) - sides (lines)

inscribed in a conic - circumscribed around a conic

collinear - concurrent

Two theorems or configurations are called dual if the one may be obtained from the other by

replacing each concept and operator by its dual concept or operator. Some other mathematical

topics where duality occurs are Boolean algebra, tessellations, polyhedra, trigonometry, etc. If

a general duality exists, then all the theorems of that particular topic occur in pairs, each similar

to the other and identical in structure, except for the interchange of dual concepts. In such a case

therefore the dual of any true theorem, is another true theorem. In fact, it is unnecessary to

prove the dual results since their proofs can be obtained by simply writing down the proofs of

the original results word by word, replacing only relevant concepts with their corresponding

duals. The establishment of a general duality is therefore, apart from its aesthetic appeal, also

very economical from a logical point of view.

In this article an interesting duality between addition and multiplication of terms to produce

sequences or series will be discussed, and examples will be presented that could provide a

valuable source for investigative or enrichment work for students at the high school or under-

graduate level. At the most basic level this duality is apparent from the fact that both operations
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are commutative, as well as associative. In other words, for any mathematical expression based

only on these properties, the two operations are interchangeable; ie. dual.

DUALITY BETWEEN ARITHMETIC SERIES & GEOMETRIC PRODUCT

Yeshurun (1978) has pointed out a useful duality between arithmetic and geometric sequences

which is apparently not very well known. Consider for example:

(1) an arithmetic sequence: a; a + d; a + 2d; ...; a + (n−1)d

(2) a geometric sequence: a; ar; ar2 ; ...; arn −1

By comparing these two examples it should be clear that they are essentially constructed in the

same way. For the arithmetic sequence, a constant number is added to the first term to produce

the second term, then to the second to produce the third term, etc. For the geometric sequence,

however, a constant number is multiplied with the first term to produce the second term, then to

the second to produce the third term, etc. So clearly the one sequence can be obtained from the

other by simply interchanging the addition of a constant number with the multiplication by a

constant number, and are therefore dual. A further comparison of the n -th term of each

sequence also shows that this interchange results in a corresponding interchange between a

linear function and an exponential function of n. For example, in the case of the arithmetic

sequence the constant number d is multiplied by a factor (n - 1) whereas in the geometric

sequence the constant number r  is raised to the power (n - 1).

This duality extends to arithmetic series and geometric products as follows:

(1) an arithmetic series: S = a + (a + d) + (a+ 2d) + ...+ (a + (n−1)d)

(2) a geometric product: P = a× (ar) × (ar 2) × ...× (arn−1)

To derive a formula for an arithmetic series, we usually write two versions below each other as

follows:

S = a + (a + d) + (a+ 2d) + ...+ (a + (n−1)d)

S = (a + (n −1)d) +...+ (a+ 2d) + (a + d) + a

Then by adding these together, simplifying, and calling the n -th term q, one easily arrives at

the following formula for an arithmetic series: S = n
2 (a+ q). Similarly, one can derive a

formula for a geometric product by writing two versions below each other:

P = a× (ar) × (ar 2) × ...× (arn−1)

P = (arn −1) × ...× (ar2) × (ar) × a

Then by multiplying these together, simplifying, and calling the n -th term q, one easily arrives

at the following formula for a geometric product: P = (aq)
n
2 .



Published in (2000). Int. J. Math. Ed. Sci. Technol, 31(3), Nov, 447-477. All rights reserved.

Here the duality between the two formulae is again clearly apparent. In the case of the arithmetic

series the sum of the first and last term is multiplied by a factor n
2  whereas in the geometric

product the product of the first and last term is raised to the power n
2 .

A FIBONACCI GENERALIZATION

The well-known Fibonacci series, namely:

1 + 1 + 2 + 3 + 5 + 8 + 13 + 21 + 34 + 55 + ...
can easily be constructed by the rule Tn + Tn+1 = Tn+2, where the n -th term is called Tn. Of

course, one does not have to start with T1 = 1 and T2 = 1, but any arbitrarily chosen T1 and T2
would do. If we call the sum to n terms Sn, then the Fibonacci series has the following

interesting property: T2 + Sn = Tn+2.

Conversely, if we construct a series according to the rule C + Sn = Tn+2, then it will have the

property Tn + Tn+1 = Tn+2 for all n > 1. For example, arbitrarily choose T1 = 1, T2 = 2 and

C = 3, then according to the rule C + Sn = Tn+2:

C + S1 = 3 + 1 = 4 = T3
C + S2 = 3 + 3 = 6 = T4
C + S3 = 3 + 7 = 10 = T5; etc.

This gives the series: 1 + 2 + 4 + 6 + 10 + 16 + 26 + 42 + ... which clearly has the property Tn
+ Tn+1 = Tn+2 for all n > 1. If however C is chosen equal to T2 then it is also true for n = 1.

The Fibonacci series can further be considered as a special case of a whole family of series

which can be constructed by simple variations in the above construction rules. For example one

could let one's students investigate the following sets of rules:

Term       addition       rule       Sum       addition       rule   
Tn + Tn = Tn+1 C + Sn = Tn+1
Tn + Tn+1 = Tn+2 C + Sn = Tn+2
Tn + Tn+2 = Tn+3 C + Sn = Tn+3
Tn + Tn+3 = Tn+4 C + Sn = Tn+4

Before reading any further the reader is encouraged to first construct a few examples according

to the above rules. A heuristic description of the Lakatosian way in which a similar

investigation by a high school teacher and his class lead to the following two generalizations in

relation to this family of series is given in De Villiers (in press):

Theorem 1
If Tn is the nth term and Sn is the sum to n terms of these terms, then for all n > 1:

C + Sn = Tn+k+1 => Tn + Tn+k = Tn+k+1 where C is any real number and k ≥  0.

Proof
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The proof is based on the assumptions (a) and (b) below (which follow automatically from the

notation):
(a) Sn = Sn-1 + Tn         ... n > 1
(b) Tn+k+1 = C + Sn <=> Tn+k = C + Sn-1 (n is replaced by n - 1).

Tn+k+1 = C + Sn
   => Tn+k+1 = C + Sn-1 +Tn  ... from (a)

   => Tn+k+1 = Tn+k + Tn ... from (b)

Note that  S0 becomes implicitly defined as S0 = Tk+1 - C (from assumption (b)) in the

construction of such series. However from assumption (a) we have that S0 = S1 - T1 = 0.

Assumption (a) will therefore be true for n = 1 only if we choose Tk+1 in such a way that S0
becomes 0 in S0 = Tk+1 - C; therefore Tk+1 must be chosen equal to C. In other words, if we

choose Tk+1 = C, assumption (a) would be valid for n = 1 and therefore the conclusion

Tn+k+1 = Tn+k + Tn would then be true for all n.

Theorem 2
If Tn is the nth term and Sn is the sum to n terms of these terms, then for all n:

Tn + Tn+k = Tn+k+1 => Tk+1 + Sn = Tn+k+1 where k ≥  0.

Proof

Firstly write the consecutive terms of the series as the following differences:
T1 = Tk+2 - Tk+1
T2 = Tk+3 - Tk+2
T3 = Tk+4 - Tk+3

.

.

.
Tn-1 = Tk+n - Tk+n-1
Tn = Tk+n+1 - Tk+n

Then adding up the left and right columns respectively, we find the desired result Sn = Tk+n+1
- Tk+1 or Sn + Tk+1 = Tn+k+1.

A DUAL FIBONACCI GENERALIZATION

Using the duality between arithmetic series and geometric products mentioned earlier, one can

now immediately formulate the following two dual theorems to Theorems 1 & 2. (Although it is

not necessary to give the proofs, they will be given below simply to illustrate the duality).

Theorem 3
If Tn is the nth term and Pn is the product to n terms of these terms, then for all n > 1: C ×  Pn
= Tn+k+1 => Tn ×  Tn+k = Tn+k+1 (where k ≥  0).
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Proof

The proof is based on the assumptions (a) and (b) below (which follow automatically from the

notation):
(a) Pn = Pn-1 ×  Tn         ... n > 1
(b) Tn+k+1 = C ×  Pn <=> Tn+k = C ×  Pn-1 (n is replaced by n - 1).

Tn+k+1 = C ×  Pn
   => Tn+k+1 = C ×  Pn-1 × Tn  ... from (a)

   => Tn+k+1 = Tn+k ×  Tn... from (b)

Note that  P0 becomes implicitly defined as P0 = Tk+1 ÷  C (from assumption (b)) in the

construction of such series. However from assumption (a) we have that P0 = P1 ÷  T1 = 1.

Assumption (a) will therefore be true for n = 1 only if we choose Tk+1 in such a way that P0
becomes 1 in P0 = Tk+1 ÷  C; therefore Tk+1 must be chosen equal to C. In other words, if

we choose Tk+1 = C, assumption (a) would be valid for n = 1 and therefore the conclusion

Tn+k+1 = Tn+k ×  Tn would then be true for all n.

Theorem 4
If Tn is the nth term and Pn is the product to n terms of these terms, then for all n:

Tn ×  Tn+k = Tn+k+1 => Tk+1 ×  Pn = Tn+k+1 (where k ≥  0).

Proof

Firstly write the consecutive terms of the product as the following quotients:

T1 = 
Tk+ 2

Tk+1

T2 = 
Tk +3

Tk+ 2

T3 = 
Tk+ 4

Tk +3

.

.

.

Tn-1 = 
Tk+ n

Tk+ n−1

Tn = 
Tk+ n+1

Tk+ n

Then multiplying up the left and right columns respectively, we find the desired result Pn =

Tk+n+1 ÷  Tk+1 or Pn ×  Tk+1 = Tn+k+1.

Examples

Let us consider an example of Theorem 3 for k = 1 (which is the dual to the Fibonacci series
itself). Arbitrarily choose T1 = 2, T2 = 3 and C = 2. Then T3 = C× P1 = 2× 2 = 4, T4 = C× P2
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= 2× 6 = 12, etc., giving us the series: 2× 3× 4× 12× 48× 576× 27648× 15925248 ... Here we
clearly have as before T1× T2 ≠  T3, but T2× T3 = T4, T3× T4 = T5, T4× T5 = T6, etc.

Let us also consider an example of Theorem 4 for k = 1 (which is also the dual to the Fibonacci
series itself). Arbitrarily choose T1 = 2, T2 = 3. Then T3 = T1× T2 = 6, T4 = T2× T3 = 18,

etc., giving us the series: 2× 3× 6× 18× 108× 1944× 209952× 408146688×  ... Here we
clearly have as before P1× T2 = T3, P2× T2 = T4, P3× T2 = T5, etc.

THE GOLDEN & OTHER RATIOS

In a golden rectangle, the rectangle obtained by removing a square from one end is similar to

the original rectangle (see Figure 1). The ratio of the length to the width of such a rectangle is
called the golden ratio and is often denoted by the symbol φ . This ratio φ = a

b  is defined by:
a

b
=

b

a − b
.

Cross multiplying and then dividing by b2   gives:

 
a

b
 
 

 
 

2

−
a

b
 
 

 
 −1= 0.

So the golden ratio is the positive root of the quadratic equation:

x2 − x −1= 0

and has a value of 1.61803 (correct to 5 decimals).
a

b a-b

b

Figure 1

A truly surprising result is the relationship of the Fibonacci sequence with the golden ratio. For

example, the limit of the quotients of adjacent terms of the Fibonacci sequence is the golden

ratio, ie.:

lim
n→ ∞

Tn +1

Tn

= φ .

Since convergence is fast, it is a good activity to let students compute these ratios using a

calculator or a computer and watching them approach φ . What about the ratios of adjacent

terms for the family of series we have discussed earlier? Do they also approach a limit? Are

there corresponding limits for the dual Fibonacci products?

Let us consider a case where k = 2 with the property Tn + Tn+2 = Tn+3:
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1 + 1 + 1 + 2 + 3 + 4 + 6 + 9 + 13 + 19 + 28 + 41 + 60 + 88 + 129 + 189 + 277 + ...

Here we have the following ratios (correct to four decimals):
T11

T10

=
28

19
= 1.4736;

T12

T11

=1.4642;
T13

T12

= 1.4634;
T14

T13

= 1.4666; etc.

From the repetition of the first two decimals, we clearly already have convergence correct to

two decimal places. It is left to the reader to explore this and other cases further.

In the preceding case we were looking for a number d so that Tn× d = Tn+1. In the dual case,

we therefore need to look for a number so that (Tn)d = Tn+1 . In other words, for the dual case

we need to consider the ratios: 
logTn+1

logTn

. Let us now consider the example of a dual Fibonacci

product discussed in the previous paragraph, namely:

2× 3× 6× 18× 108× 1944× 209952× 408146688×  ...

Here we have the following ratios (correct to four decimals):
logT5

logT4

=1.6199;
logT6

logT5

=1.6173;
logT7

logT6

= 1.6183;
logT8

logT7

=1.6179; etc.

From the repetition of the first two decimals, we clearly already have convergence to the golden

ratio correct to two decimal places. It is a good exercise to let one's students explore this and

other cases further, and to allow them to discover the rather surprising generalization below.

Technology like graphics calculators with table facilities, or a spreadsheet on computer, could

be very useful in this respect. In what follows a partial proof of these observations will be

given that should be accessible to high school students.1

Theorem 5
If Tn is the nth term of a sequence with the property: Tn + Tn+k = Tn+k+1, then for k ≥  0:

lim
n→ ∞

Tn +k+1

Tn+ k

= α  where α  is the positive root of xk+1 − xk −1= 0.

Proof

If we assume that lim
n→ ∞

Tn +k+1

Tn+ k

= α  exists, then we have the following:

                                    
1 A complete proof can be found in an article by Sergio Falcon (2002) in IJMEST, and which can be downloaded
directly from    http://mysite.mweb.co.za/residents/profmd/fibonacci.pdf   

http://mysite.mweb.co.za/residents/profmd/fibonacci.pdf
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Tn+ k+1 = Tn+ k + Tn

T
n+ k+1

Tn+ k

= 1+
Tn

Tn+ k

Tn+ k+1

Tn+ k

= 1+ Tn

Tn+1

• Tn+1

Tn+2

•  ... • Tn+ k−1

Tn+ k

lim
n→∞

Tn +k+1

Tn+ k

 
 
  

 
 = 1+ lim

n→∞

Tn

Tn+1

• Tn+1

Tn +2

•  ... • Tn+ k−1

Tn+ k

 
 
  

 
 

α = 1+ 1
α k

α k+1 − α k −1= 0

    

From the above it is therefore clear that if lim
n→ ∞

Tn +k+1

Tn+ k

= α  exists, α  is a root of the polynomial

xk+1 − xk −1= 0. To prove the existence of this limit in general is however a matter that goes

beyond the scope of this article. For k is odd, the equation x =1+
1

xk  has two real solutions,

and it is easy to generalize the approach used by Schielack (1987). However, for k is even

(where there is only one real solution), and the more general case which includes the

consideration of complex roots, it appears that one would have to utilize an approach similar to

that of approach of Niven, Zuckerman & Montgomery (1991: 493-499).

Furthermore, students who explored it empirically may have noticed that these ratios α k  start at

2 for k = 0, and then appear to decrease towards a limiting value of 1 as k increases. This
observation can also easily be explained as follows. For k = 0, the series has the rule Tn + Tn =

Tn+1, obviously giving us the constant ratio 
Tn+1

Tn

= 2, which of course corresponds to the

solution of the equation x =1+
1

xk  for this value of k. By letting k increase in the latter

equation, it now follows that 
1

xk  decreases and therefore the root α  must correspondingly

decrease. Finally, taking the limit as k → ∞  of the same equation, we obtain α =1.

It is also interesting to ask: what geometric interpretation can be given to these ratios α k  (which

incidentally, I fondly refer to as the "precious metal ratios")? Clearly if we start with a rectangle

with sides a and b where a ≥ b, then 
a

b
 
 

 
 

k +1

−
a

b
 
 

 
 

k

−1= 0. Multiplying through by bk+1  and

rearranging we obtain: 
a

b
 
 

 
 

k

=
b

a− b
. Geometrically, this therefore means that after the square

with sides b is removed, the rectangle obtained must be similar to a rectangle with sides ak  and

bk . Examples of corresponding rectangles for k = 0, k = 1 and k = 2 are respectively shown in
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Figures 2a, 2b and 2c. It is also obvious that as k increases b approaches a and the rectangle

tends towards a square.

a

b

a

b

a

b

Figure 2

Let us now consider the dual of Theorem 5 and its proof.

Theorem 6
If Tn is the nth term of a sequence with the property: Tn ×  Tn+k = Tn+k+1, then for k ≥  0:

lim
n→ ∞

logTn+ k+1

logTn+ k

= α  where α  is the positive root of xk+1 − xk −1= 0.

Proof
 Consider the property Tn ×  Tn+k = Tn+k+1. By taking logarithms on both sides, it can be

transformed into logTn + logTn+ k = logTn+ k+1. This equation is in form equivalent to the

recursive formula Tn + Tn+k = Tn+k+1 discussed in the previous paragraph, and it can

therefore be shown in the same way that if the limit lim
n→ ∞

logTn+ k+1

logTn+ k

= α  exists, it is a solution of

the given polynomial.

ANOTHER GENERALIZATION AND ITS DUAL

Coleman (1989) has shown another interesting generalization of the Fibonacci sequence by
using the general rule Tn + B× Tn+1 = Tn+2 where B is a positive integer, and showing that

the ratios 
Tn+1

Tn

 approach the positive root of x2 − Bx −1= 0 as  n becomes large.

In the same way we can construct a dual with the rule Tn × Tn+1( )B
= Tn+ 2  (where B is a positive

integer), and easily show that the ratios 
logTn+1

logTn

 approach the positive root of x2 − Bx −1= 0

as  n becomes large.

Recently, Siddiqui (1995), a high school student, gave the following result that for series
generated by the following rule: Tn + Tn+1 + Tn+2 = Tn+3 we have:

(T3 - T1) + 2Sn = Tn+3 - Tn+1.
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It is left to the reader to verify that the corresponding dual holds for products created by the
rule: Tn× Tn+1 ×  Tn+2 = Tn+3, namely:

T3

T1

 
 
  

 
 × Pn

2 =
Tn+ 3

Tn +1

.

To not disappoint those who know that I can seldom resist ending a lecture (or an article)

without posing a final question or two for further investigation, I would therefore in conclusion

like to pose to the reader the further investigation of the aforementioned theorems in relation to
sequences and series with the general property A× Tn + B× Tn+k = Tn+k+1, and their duals.

Another challenging investigation is to explore the aforementioned theorems in relation to
sequences and series with the general property A× Tn + B× Tn+1 = Tn+k (k > 1), and their

duals. This is of course not too mention exploring the further generalization of the wealth of

other properties of the standard Fibonacci series!

"Mathematics is the only infinite human activity. It is conceivable that humanity could

eventually learn everything in physics or biology. But humanity certainly won't ever be

able to find out everything in mathematics, because the subject is infinite."       

- Paul Erdös

"It is not knowledge, but the act of learning, not possession but the act of getting there,

which grants the greatest enjoyment. When I have clarified and exhausted a subject,

then I turn away from it, in order to go into darkness again; the never-satisfied man is

so strange - if he has completed a structure, then it is not in order to dwell in it

peacefully, but in order to begin another. I imagine the world conqueror must feel thus,

who, after one kingdom is conquered, stretches out his arms for another."

- Karl Gauss
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