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"Symmetry as wide or as narrow as you may define it, is one idea by which man
through the ages has tried to comprehend, and create order, beauty and perfection.
- HermannNeyl

INTRODUCTION

Duality is aspecialkind of symmetry.In everydaylanguagea commonduality existsbetween
antonymssuchashotandcold, tall andshort, love andhatred male andfemale,etc. Basically,

the one conceptis definedby andunderstoodn termsof the other, andtogetherthey form a

wholewhich complementindenricheachother.

In mathematicghereareoftenimportantdualitiesbetweercertainconceptsaand operators For
examplejn projectivegeometrywe find aninterestingduality betweerthefollowing concepts:

vertices(points) - sides(lines)
inscribedn aconic - circumscribedaroundaconic
collinear - concurrent

Two theoremsor configurationsarecalleddual if the onemay be obtainedfrom the other by
replacingeachconceptandoperatorby its dual conceptor operator.Someother mathematical
topicswhereduality occursare Booleanalgebratessellationspolyhedra trigonometry etc. If
ageneraduality exists,thenall thetheorem®f thatparticulartopic occurin pairs, eachsimilar
to theotherandidenticalin structure gxceptfor theinterchangeof dualconceptsin sucha case
thereforethe dual of anytrue theorem,is anothertrue theorem.In fact, it is unnecessaryo
provethedualresultssincetheirproofs canbe obtainedby simply writing down the proofs of
the original resultsword by word, replacingonly relevantconceptswith their corresponding
duals. The establishmenof a generalduality is therefore,apartfrom its aesthetiappeal,also
very economicafrom alogical pointof view.

In this article an interestingduality betweenaddition and multiplication of termsto produce
sequencesr serieswill be discussedand exampleswill be presergd that could provide a

valuablesourcefor investigativeor enrichmentwork for studentsat the high schoolor under-
graduatdevel. At themostbasiclevel this duality is apparentfrom the factthatboth operations
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arecommutativeaswell asassociatie. In otherwords,for any mathematicakxpressiorbased
only onthesepropertiesthetwo operationgreinterchangeablae. dual.

DUALITY BETWEEN ARITHMETIC SERIES& GEOMETRIC PRODUCT
Yeshurun(1978) haspointedout a usefulduality betweerarithmeticand geometricsequences
whichis apparentlynotvery well known.Consideffor example:

(1) anarithmeticsequencea; a+d;a+2d;...;a+(n-1)d

(2) ageometricsequencea; ar; ar’;...;ar"

By comparinghesewo examplest shouldbe clearthatthey areessentiallyconstructedn the
sameway. For thearithmeticsequencea constanhumberis addedto thefirst termto produce
theseconderm, thento thesecondo producethe third term, etc. For the geometricsequence,
however,aconstanhumbeiis multiplied with thefirst termto produceheseconderm, thento
thesecondo producehethird term,etc. Soclearly the one sequenceanbe obtainedfrom the
otherby simply interchanginghe addition of a constantnumberwith the multiplication by a
constantnumber,and are thereforedual. A further comparisonof the n -th term of each
sequencalso shows that this interchangeresultsin a correspondingnterchangebetweena
linear function and an exponentialfunction of n. For example,in the caseof the arithmetic
sequencehe constantnumberd is multiplied by a factor (n - 1) whereasin the geometric
sequencéheconstanhumberr is raisedto thepower(n - 1).

This duality extendgo arithmeticseriesandgeometricproductsasfollows:
(1) anarithmeticseriesS=a+(a+d)+(a+2d) +...+ (a+(n-1)d)
(2) ageometrigoroduct: P = ax (ar) x (ar?) x...x (ar"™*)

To deriveaformulafor anarithmeticseries we usuallywrite two versionsbelow eachotheras
follows:
S=za+(a+d)+(a+2d)+...+(a+(n-1)d)
S=(@+((n-2d)+...+(a+2d)+(a+d)+a
Thenby addingthesetogether simplifying, andcalling then -th termq, oneeasilyarrivesat
the following formula for an arithmetic series: S=5(a+q). Similarly, one can derive a
formulafor ageometricproductby writing two versionsbeloweachother:
P=ax(ar)x(ar’)x..x (ar"™")
P=(ar" ") x...x(ar’) x(ar) x a
Thenby multiplying thesetogethersimplifying, andcalling then -th termq, oneeasilyarrives
atthefollowing formulafor ageometricproduct: P = (ad)®.
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Heretheduality betweerthetwo formulaeis againclearlyapparentln thecaseof the arithmetic
seriesthe sum of thefirst andlasttermis multiplied by a factor > whereasin the geometric
producttheproductof thefirst andlasttermis raisedto thepower 5.

A FIBONACCI GENERALIZATION
Thewell-knownFibonacciseries namely:

1+1+2+3+5+8+13+21+34+55+ ...
caneasilybeconstructedy theruleTn + Tn+1 = Tn+2, wherethen -th termis called Tp. Of
course onedoesnothaveto startwith T1 = 1 andT2 = 1, butanyarbitrarily chosernr'1 andT2
would do. If we call the sumto n terms Sy, then the Fibonacci serieshas the following
interestingproperty T2 + Sp = Tp+2.

Converselyjf we construcaseriesaccordingo therule C + Sp = Tp+2, thenit will havethe
propertyTn + Tn+1= Tpn+2for alln> 1. For example arbitrarily chooseT1 = 1, T2 = 2 and
C = 3, thenaccordingto theruleC + Sp = Tp+2:

C+S1=3+1=4=T3

C+S2=3+3=6=T4

C+S3=3+7=10=Tg; etc.
Thisgivestheseries1+2+4+ 6+ 10+ 16+ 26+ 42+ ... whichclearlyhasthe propertyTp
+ Tn+1= Tp+2for alln> 1. If howeverC is choserequalo T2 thenit is alsotruefor n = 1.

The Fibonacciseriescanfurtherbe consideredas a specialcaseof a whole family of series
which canbeconstructedy simplevariationsin theaboveconstructiorrules. For exampleone
couldletone'sstudentsnvestigatehefollowing setsof rules:

Termadditionrule Sumadditionrule
Th+Th=Tnh+1 C+Sn=Tnh+1
Tn+Tn+1=Tn+2 C+Sn=Tn+2
Tn+Tn+2=Tn+3 C+3Sn=Tn+3
Tn+Tn+3=Tn+4 C+3Sn=Tn+4

Beforereadinganyfurtherthereadeis encouragedo first construcia few examplesaccording
to the aboverules. A heuristic description of the Lakatosianway in which a similar
investigationby ahigh schoolteacheandhis classleadto the following two generalizationsn
relationto thisfamily of seriess givenin DeVilliers (in press):

Theorem1
If ThisthenthtermandSp is thesumto n termsof theseerms,thenfor alln > 1.:

C+ Sn=Tn+k+1=>Tn + Tn+k = Tn+k+1 whereC is anyrealnumberandk = O.

Proof
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Theproofis basedn theassumptionga) and (b) below (which follow automaticallyfrom the
notation):
(@ Sn=Sp-1+Tn ..n>1
(b)  Tn+k+1=C+ Spn<=>Tpn+k=C+ Sp-1(nisreplacedoyn- 1).
Tn+k+1=C+ Sp
=> Tn+k+1=C+Sn-1+Tn ... from(a)
=> Tn+k+1=Tn+k+ Tn ... from (b)

Note that Sg becomesmplicitly definedas Sg = Tk+1 - C (from assumption(b)) in the
constructionof suchseries.Howeverfrom assumptior(a) we havethatSgp = S - T1 = 0.

Assumption(a) will thereforebetruefor n = 1 only if we chooseTk+1 in sucha way thatSg

become® in SQ = Tk+1 - C; thereforeTk+1 mustbechoserequalto C. In otherwords,if we

chooseTk+1 = C, assumption(a) would be valid for n = 1 and thereforethe conclusion
Tn+k+1 = Tn+k + Tn would thenbetruefor all n.

Theorem 2
If ThisthenthtermandSp is thesumto n termsof thesaerms,thenfor all n:

Tn+ Tn+k = Tn+k+1=> Tk+1 + Sn = Tn+k+1 wherek > 0.

Proof

Firstly write theconsecutiveermsof theseriesasthefollowing differences:
T1=Tk+2- Tk+1
T2=Tk+3- Tk+2
T3=Tk+4- Tk+3

Tn-1=Tk+n - Tk+n-1

Tn=Tk+n+1- Tk+n
Thenaddingup theleft andright columnsrespectivelyye find thedesiredesultSn = Tk+n+1
- Tk+1 0r Spn + Tk+1 = Tn+k+1.

A DUAL FIBONACCI GENERALIZATION

Usingthe duality betweerarithmeticseriesandgeometricproductsmentionedearlier,one can
now immediatelyformulatethefollowing two dualtheoremg$o Theoremd & 2. (Althoughit is
notnecessaryo givetheproofs,theywill begivenbelowsimplyto illustratetheduality).

Theorem 3
If Tnis thenth termandPp, is theproductto n termsof thesegerms,thenfor alln > 1: C x Pp

= Tn+k+1=>Tn X Tn+k = Tn+k+1 (Wherek = 0).
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Proof

Theproofis basedn theassumptionga) and (b) bebw (which follow automaticallyfrom the
notation):

(@ Pn=Pn-1xTn ..n>1

(b)  Tn+k+1=C x Pp<=>Tp+k=C x Pp-1(nisreplacedyn-1).
Thn+k+1=C x Pn
=> Tn+k+1=C X Ppn-1xTp ...from(a)
=> Tn+k+1=Tn+k X Tn... from(b)

Notethat Pg becomesmplicitly definedas Pg = Tk+1 + C (from assumptionb)) in the
constructionof suchseries.Howeverfrom assumptior(a) we havethatPg = P1 + T1 = 1.

Assumption(a) will thereforebetruefor n = 1 only if we chooseTk+1 in sucha way thatPg

becomed in Pg = Tk+1 + C; thereforeTk+1 mustbe chosenequalto C. In otherwords, if

we chooseTk+1 = C, assumptior(a) would be valid for n = 1 and thereforethe conclusion
Tn+k+1= Tn+k X Tn wouldthenbetruefor alln.

Theorem4
If Tnis thenth termandPn, is theproductto n termsof theseerms,thenfor all n:

Tn X Tn+k = Tn+k+1=> Tk+1 X Pn= Tn+k+1 (Wherek = 0).

Proof
Firstly write theconsecutiveermsof theproductasthefollowing quotients:
Tl — Tk+2
Tk+l
T2 - Tk+3
Tk+2
T3 - Tk+4
Thss
' T
Tn-1= —*
Tk+n—1
T
Th = k+n+l
"

k+n

Thenmultiplying up theleft andright columnsrespectivelywe find the desiredresultPp =
Tk+n+1 + Tk+10rPn x Tk+1 = Tn+k+1

Examples

Letus consideran exampleof Theorem3 for k = 1 (which is the dualto the Fibonacciseries
itself). Arbitrarily choosel1 =2, T2=3andC=2. ThenT3=CxP1=2x2=4,T4=CxP2
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=2x6=12, etc.,givingustheseries2x 3x 4x 12x 48x 576x 27648x 15925248 .. Herewe
clearlyhaveasbeforeT1x T2 # T3, butToxT3="Ty, T3xT4=Ts, T4x T5 = Teg, etc.

Letusalsoconsidemnexampleof Theoremd for k = 1 (whichis alsothe dualto the Fibonacci
seriegtself). Arbitrarily choo® T1 = 2, T2 = 3. ThenT3=T1xT2 =6, T4 = T2xT3 = 18,

etc., giving us the series: 2x 3x 6x 18x 108x 1944x 209952 40814668& ... Here we
clearlyhaveasbeforeP1x T2 = T3, P2x T2 = T4, P3x T2 =Ts, etc.

THE GOLDEN & OTHER RATIOS
In a goldenrectanglethe rectangleobtainedby removinga squarefrom oneendis similar to

theoriginal rectangleg(seeFigure 1). Theratio of the lengthto the width of sucha rectangleis
calledthegoldenratio andis oftendenotedy thesymbol@. Thisratio = % is definal by:

a__b_

b a-b
Crossmultiplying andthendividing by b® gives:

2

EED — DED— 1=0.

hO O
Sothegoldenratiois thepositiveroot of thequadraticequation:

X -x-1=0
andhasavalueof 1.61803(correctto 5 decimals).

- a ——»
b
b ] a-b
Figure 1

A truly surprisingresultis therelationshipof theFibonaccisequencevith the goldenratio. For
examplethelimit of the quotientsof adjacentermsof the Fibonaccisequences the golden
ratio, ie.:

T
im 22 =
n

Sinceconvergencas fast, it is a good activity to let studentscomputetheseratios using a
calculatoror a computerand watchingthemapproachg. Whataboutthe ratios of adjacent

termsfor thefamily of serieswe havediscussecearlier? Do they also approacha limit? Are
therecorrespondingimits for thedualFibonacciproducts?

Letusconsideracasevherek = 2 with thepropertyTn + Tn+2=Tn+3
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1+1+1+2+3+4+6+9+13+19+28+41+60+ 88+ 129+ 189+ 277+ ...
Herewe havethefollowing ratios(correctto four decimals):
Tn_28_ =14736—== T =14642 = T o =14634 —= T =1 466€; etc.
TlO 19 Tll T12 T13
From the repetitionof thefirst two decimalswe clearly already have convergencecorrectto

two decimalplaceslt is left to thereadeto explorethis andothercasedgurther.

In theprecedingcasewe werelookingfor anumberd so thatTphx d = Tp+1. In thedual case,
we thereforeneedto look for a numberso that(T,)* = T.,. In otherwords, for the dualcase

. . logT . : .

we needo considetheratios: % . Letus now considerthe exampleof a dual Fibonacci
n

product discussed in the previous paragraph, namely:

2x 3x 6% 18x% 108x 1944x 209952 40814668 ...

Herewe havethefollowing ratios(correctto four decimals):

IogT ~16199.%9Tc IogT —16173109T2 logT, - 16183.99Ts IogT
logT, logT, log Ty logT,

Fromtherepetitionof thefirst two decimalswe clearlyalreadyhaveconvergencdo the golden
ratio correctto two decimalplaces.lt is a good exerciseto let one'sstudentsexplorethis and
othercasedurther, andto allow themto discoverthe rathersurprisinggeneralizationbelow.
Technologylike graphicscalculatorswith table facilities, or a spreadsheein computer,could
be very usefulin this respect.In what follows a partial proof of theseobservationswill be
giventhatshouldbeacaessibldo high schoolstudents.

=1617¢; etc.

Theorem5
If Tn is thenth termof a sequencevith the property:Tn + Tn+k = Tn+k+1, thenfor k = O:

T . .
lim <=+ = ¢ wherea is thepositiverootof x“* = x“-1=0.
n-e n+k

Proof
T . ,
If we assumehat lim T“;k” = a exists,thenwe havethefollowing:

n- oo
n+k

L A complete proof can be found in an article by Sergio Falcon (20020iEST, and which can be downloaded
directly fromhttp://mysite.mweb.co.zal/residents/profmd/fibonacci.pdf
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Tn+k+1 = Tn+k + Tn

Iﬂikil:l_l_ Tn
Tn+k n+k
Ini"il=1+ TooToa, . LI
Tn+k Tn+1 Tn+2 Tn+k
fim Seseer B g 4 i o e Tosa s o TownF
nﬂmDTn.’,k EI naool:]Tn*_l Tn+2 Tn+k |:
am1el
a

Gk+1—ak_1:O

n- oo

Fromtheaboveit is thereforeclearthatif Ilm;;“”:a exists, a is aroot of the polynomial

n+k

X' = x“-1=0. To provethe existenceof this limit in generalis howevera matterthatgoes

. . . . 1 .
beyondthescopeof this article.For k is odd, the equation x :1+7 hastwo realsolutions,

andit is easyto generalizethe approachusedby Schielack(1987). However,for k is even
(where there is only one real solution), and the more general case which includesthe
consideratiorof complexroots, it appearshatonewould haveto utilize anapproah similar to
thatof approactof Niven, Zuckerman& Montgomery(1991:493-499).

Furthermorestudentavho exploredt empiricallymayhavenoticedthattheseratios o, startat

2 for k = 0, andthenappea to decreasdowardsa limiting valueof 1 ask increasesThis
observatiortanalsoeasilybe explainedasfollows. For k = 0, theserieshastheruleTp + Tp =

. - T .
Tn+1, obviouslygiving us the constantratio T”—” =2, which of coursecorrespondgo the

n

. . 1 . . : .
solution of the equationx =1+— for this value of k. By letting k increasein the latter
X

o 1 .
equation,it now follows that — decreaseand thereforethe root a must correspondingly
X

decreasekinally, takingthelimit ask — o of thesameequationwe obtaina =1.

It is alsointerestingto ask:whatgeometridnterpretatiorcanbegivento theseratios o, (which

incidentally,| fondly referto asthe"preciousmetalratios")? Clearly if we startwith a rectangle

I:aljkﬂ _ EﬁDk

with sidesaandb wherea > b, then 0 TN ~1=0. Multiplying throughby b“! and
arf _ b
rearrangingve obtain:EES :ﬁ' Geometrically this thereforemeanghatafterthe square

with sidesb is removedtherectangleobtainedmustbesimilar to a rectanglewith sidesa® and
b*. Examplesof correspondingectanglegor k = 0, k = 1 andk = 2 arerespectivelyshownin
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Figures2a, 2b and2c. It is alsoobviousthatask increase$® approachea andthe rectangle
tendstowardsasquare.

b b
b
a a a
Figure 2
Letusnow considethedualof Theoremb andits proof.
Theorem 6
If Tnis thenth termof a sequenceavith the property:Tn x Tn+k = Tn+k+1, thenfor k > O:
. logT . " N
lim =2 _ntket = o wherea is thepositiverootof X< = x =1= 0.
n-e IOng+k
Proof

Considerthe propertyTn X Tn+k = Tn+k+1. By takinglogarithmson both sides, it canbe
transformedinto logT, +logT,,, =1ogT,,,.,- This equationis in form equivalentto the
recursiveformulaTn + Tn+k = Tn+k+1 discussedin the previous paragraph,and it can

, . ... logT o :
thereforebeshownin thesameway thatif thelimit lim % = exists,it is a solutionof
- n+k

thegivenpolynomial.

ANOTHER GENERALIZATION AND ITS DUAL

Coleman(1989) has shown anotherinterestinggeneralizationof the Fibonacci sequenceyy
usingthegeneralrule Tn + Bx Tpn+1 = Tn+2 whereB is a positiveinteger,andshowingthat

T .
ther<';1t|os_|_”—+l approactihepositiverootof xX* — Bx—1=0 as n becomesarge.

n

In thesameway we canconstruca dualwith therule T, x (T..,)° =T, (whereB is a positive

|Og Tn+l

integer),andeasilyshowthatthe ratios og T approactthe positiveroot of x> - Bx—1=0

n

as n becomedarge.

Recently,Siddiqui (1995), a high school student,gave the following result that for series
generatedby thefollowing rule: Tn + Tp+1 + Tn+2 = Th+3 we have:

(T3-T1) + 250 =Tn+3- Tn+1.
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It is left to thereaderto verify thatthe correspondinglual holds for productscreatedby the
rule:Tnx Tn+1 X Tn+2=Tn+3, namely:

EEEX P 2= —Tn+3 .
oo " T,
To not disappointthosewho know that I canseldomresistendinga lecture (or an article)

withoutposingafinal questioror two for furtherinvestigation] would thereforein conclusion
like to poseto thereadethe furtherinvestigationof the aforementionedheoremsn relationto

sequenceandserieswith thegeneralpropertyAx Tp + Bx Tn+k = Tn+k+1, andtheirduals

Another challenginginvestigationis to explorethe aforementionedheoremsin relation to

sequenceandserieswith the generalpropertyAx Tpn + Bx Tp+1 = Tp+k (kK > 1), and their
duals. This is of coursenot too mentionexploringthe further generalizationof the wealth of

otherpropertieof thestandardribonacciseries!

"Mathematicss the only infinite humanactivity. It is conceivablethat humanitycould
eventuallylearn everythingn physicsor biology. But humaniy certainlywon'teverbe
ableto find outeverythingn mathematicshecausehesubjecis infinite."

- PaulErdos

"It is notknowledgebuttheact of learning,not possessiomuttheact of gettingthere,
which grantsthe greatestenjoymentWhen| haveclarified and exhaustedh subject,
thenl turn awayfromit, in order to go into darknessagain; the never-satisfiednanis
so strange- if he hascompleteda structure,thenit is not in order to dwell in it
peacefullyputin orderto beginandher.| imaginetheworld conquerormustfeel thus,
who, after onekingdomis conqueredstretcheut his armsfor another”

- Karl Gauss
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