A generalization of the Fermat-Torricelli point
Michael de Villiers

It is possible to generalize the result involving the Fermat-Torricelli point to similar triangles or similar isosceles triangles on the sides as follows:

"If similar triangles DBA, CBE and CFA are constructed outwardly on the sides of any ABC, then DC, EA and FB are concurrent ".

"If similar isosceles triangles DBA, ECB and FAC are constructed outwardly on the sides of any ABC so that $\angle DAB = \angle DBA$, then DC, EA and FB are concurrent ".

With regard to the first case note:
(a) if $a = \frac{1}{2}(\angle B + \angle C)$, $b = \frac{1}{2}(\angle A + \angle C)$ and $c = \frac{1}{2}(\angle A + \angle B)$, then DC, EA and FB are the angle bisectors of triangle ABC

(b) if triangles DBA, CBE and CFA are congruent, then DC, EA and BF are the altitudes of triangle ABC.

Also note with regard to the second case above:
(c) if $a = 0^\circ$, then DC, EA and FB are the medians of triangle ABC.

These two results are therefore nice generalizations of the familiar concurrencies of the angle bisectors, altitudes and medians.

However, a further unifying generalization is possible, for example:
"If triangles DBA, ECB and FAC are constructed outwardly on the sides of any $\triangle ABC$ so that $\angle DAB = \angle CAF$, $\angle DBA = \angle CBE$ and $\angle ECB = \angle ACF$ then DC, EA and FB are concurrent."

To prove this result it is first necessary to prove the following lemma.

Figure 3.11
Lemma
Triangle ABC is given. Extend AB and AC to D and E respectively so that $DE//BC$. Choose any point Y on BC and extend AY to X on DE (see Figure 3.11). Then $BY/YC = DX/XE$.

Proof
Since triangles ABY and ADX are similar we have $BY/YA = DX/XA$ and therefore $BY = (YA/XA).DX$... (1). Similarly from the similarity of triangles ACY and AEX we have $CY = (YA/XA).EX$... (2). Dividing (1) by (2), gives $BY/YC = DX/XE$, the desired result.

Proof of the Fermat generalization
Assume that the lines we want to prove concurrent intersect BC, CA and AB respectively at X, Y and Z. Extend AB to G and AC to H so that $GEH//BC$ (see Figure 3.12). Label BE, EC, CF, FA, AD and DB respectively as s_1,s_2,s_3,s_4,s_5 and s_6. Then $\angle BGE = \angle ABC$ and $\angle BEG = b$.

Figure 3.12

According to the sine rule:
\[
\begin{align*}
\frac{GE}{\sin(\angle GBE)} &= \frac{s_1}{\sin(\angle ABC)} \\
\frac{GE}{\sin(b + \angle ABC)} &= \frac{s_1}{\sin(\angle ABC)} \\
GE &= \frac{s_1 \sin(b + \angle ABC)}{\sin(\angle ABC)}
\end{align*}
\]

Similarly we obtain
\[
EH = \frac{s_2 \sin(c + \angle ACB)}{\sin(\angle ACB)}.
\]

According to the preceding Lemma therefore
\[
\frac{BX}{XC} = \frac{GE}{EH} = \frac{s_1 \sin(b + \angle ABC)}{\sin(\angle ABC)} \cdot \frac{\sin(\angle ACB)}{s_2 \sin(c + \angle ACB)}.
\]

In the same way we have
\[
\begin{align*}
CY &= \frac{s_3 \sin(c + \angle ACB)}{\sin(\angle ACB)} \cdot \frac{\sin(\angle CAB)}{s_4 \sin(a + \angle CAB)} \\
YA &= \frac{s_3 \sin(c + \angle ACB)}{\sin(\angle ACB)} \\
AZ &= \frac{s_5 \sin(a + \angle CAB)}{\sin(\angle CAB)} \cdot \frac{\sin(\angle ABC)}{s_6 \sin(b + \angle ABC)}
\end{align*}
\]

Therefore,
\[
\frac{BX}{XC} \cdot \frac{CY}{YA} \cdot \frac{AZ}{ZB} = \frac{s_1}{s_2} \cdot \frac{s_3}{s_4} \cdot \frac{s_5}{s_6} = 1 \quad \text{(3)}
\]

Applying the sine rule to triangles ECB, FAC and DBA we obtain
\[
\begin{align*}
\frac{s_1}{s_2} &= \frac{s_1}{s_2} = \frac{s_3}{s_4} = \frac{s_5}{s_6} = \frac{s_6}{s_1} = \frac{s_2}{s_3} = \frac{s_4}{s_5}
\end{align*}
\]

By substitution into (3) therefore
\[
\frac{BX}{XC} \cdot \frac{CY}{YA} \cdot \frac{AZ}{ZB} = 1 \quad \text{so that } AX, BY \text{ and } CZ \text{ are concurrent according to the converse of Ceva's theorem (see Problem 3). But then } EA, FB \text{ and } DC \text{ are also concurrent.}
\]

The author has since learned of an earlier and rather simpler proof of this generalization given by A. R. Pargeter in *The Mathematical Gazette*, Vol. 47, no. 364, pp. 218-219, and an even earlier 1936 proof by N. Alliston in *The Mathematical Snack Bar* by W. Hoffer, pp. 13-14. (These earlier proofs, however, do not mention the interesting associated result given in Equation (3) above, namely, that the product of the given side ratios of the constructed triangles (or their reciprocals) is always equal to 1).